Упражнение: Упражнение с графиките на квадратни и линейни функции


Описание на упражнението

В онлайн упражнението "Упражнение с графиките на квадратни и линейни функции" по математика за 8. клас ще проверите как се справяте със задачите за квадратни и линейни функции. Задачите от теста ще ви помогнат да преговорите каква е и къде е разположена графиката на линейна функция y=ax+b и графиката на квадратна функция y=ax^2. Знаете ли как коефициентите на функциите определят тяхното "поведение". Къде лежи графиката на функцията когато a>0 и къде лежи графиката на функцията, когато a<0. Решете задачите от теста, за сте уверени в знанията си за функции. Успех!  

За да разбереш как да направиш упражнението,
регистрирай се в Уча.се:


Въпроси: Общ брой точки: 100
5т. 1. Отбележете верните твърдения:
  • Графиката на функцията y=ax+b е права, която пресича:
5т. 2. Вярно ли е, че графиката на функцията y=a е успоредна на оста Ох?
5т. 3. Вярно ли е, че графиката на функцията y=ax минава през точка О(0;0)?
5т. 4. Графиката на коя от изброените функции е разположена изцяло над абсцисната ос Ох?
5т. 5. Изцяло в трети и четвърти квадрант е разположена графиката на функцията:
6т. 6. Отбележете общите точки на графиките на функциите:
  • y=2
  • y=2x^2
6т. 7. Може да се твърди, че графиките на функциите
  • y=x
  • y=ax^2
 
6т. 8. Вярно ли е, че графиките на дадените функции нямат обща точка?
  • y=2
  • y=-2x^2
6т. 9. Отбележете общите точки на графиките на функциите:
  • y=2x^2
  • y=-2x^2
6т. 10. Дадени са графиките на функциите:
  • y=\frac12x^2
  • y=8
  • Отбележете общите точки на графиките на функциите.
6т. 11. Графиките на дадените функции се пресичат в точки:
  • y=x
  • y=3x^2
6т. 12. Постройте графиката на функцията, разделена на интервали:
  • y=\frac12x^2,x<1
  • y=\frac12x,x\geq 1
  • Графиката на функцията е разположена в:
11т. 13. Дадена е функцията, разделена на интервали:
  • y=\frac12x+3,x\leq -2
  • y=\frac12x^2,-2<x<1
  • y=\frac12x,x\geq 1
  • Да се построи графиката на функцията. В кои точки графиката на функцията пресича Оу?
11т. 14. Дадена е функцията, разделена на интервали:
  • y=\frac12x+3,x\leq -2
  • y=\frac12x^2,-2<x<1
  • y=\frac12x,x\geq 1
  • Кои са общите точки на графиката на функцията и Ох?
  • Попълнете първо точката, разположена по-наляво.
11т. 15. Дадена е функцията, разделена на интервали:
  • y=\frac12x+3,x\leq -2
  • y=\frac12x^2,-2<x<1
  • y=\frac12x,x\geq 1
  • За кои стойности на х графиката на функцията е над абсцисната ос Ох?

За да направиш упражнението, регистрирай се в Уча.се:

Коментирай

За да коментираш това упражнение, стани част от образователен сайт №1 на България!